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A B S T R A C T   

Background: Medical decision-making impacts both individual and public health. Clinical scores are commonly 
used among various decision-making models to determine the degree of disease deterioration at the bedside. 
AutoScore was proposed as a useful clinical score generator based on machine learning and a generalized linear 
model. However, its current framework still leaves room for improvement when addressing unbalanced data of 
rare events. 
Methods: Using machine intelligence approaches, we developed AutoScore-Imbalance, which comprises three 
components: training dataset optimization, sample weight optimization, and adjusted AutoScore. Baseline 
techniques for performance comparison included the original AutoScore, full logistic regression, stepwise logistic 
regression, least absolute shrinkage and selection operator (LASSO), full random forest, and random forest with a 
reduced number of variables. These models were evaluated based on their area under the curve (AUC) in the 
receiver operating characteristic analysis and balanced accuracy (i.e., mean value of sensitivity and specificity). 
By utilizing a publicly accessible dataset from Beth Israel Deaconess Medical Center, we assessed the proposed 
model and baseline approaches to predict inpatient mortality. 
Results: AutoScore-Imbalance outperformed baselines in terms of AUC and balanced accuracy. The nine-variable 
AutoScore-Imbalance sub-model achieved the highest AUC of 0.786 (0.732–0.839), while the eleven-variable 
original AutoScore obtained an AUC of 0.723 (0.663–0.783), and the logistic regression with 21 variables ob
tained an AUC of 0.743 (0.685–0.801). The AutoScore-Imbalance sub-model (using a down-sampling algorithm) 
yielded an AUC of 0.771 (0.718–0.823) with only five variables, demonstrating a good balance between per
formance and variable sparsity. Furthermore, AutoScore-Imbalance obtained the highest balanced accuracy of 
0.757 (0.702–0.805), compared to 0.698 (0.643–0.753) by the original AutoScore and the maximum of 0.720 
(0.664–0.769) by other baseline models. 
Conclusions: We have developed an interpretable tool to handle clinical data imbalance, presented its structure, 
and demonstrated its superiority over baselines. The AutoScore-Imbalance tool can be applied to highly un
balanced datasets to gain further insight into rare medical events and facilitate real-world clinical decision- 
making.   
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1. Introduction 

In medicine, decision-making encompasses diagnosis, treatment, 
disease prediction, and everyday conditions that impact individual and 
public health [1]. The increasing collection of clinical data, such as the 
growing electronic health records (EHRs) in hospitals [2] and advances 
in automated machine learning [3], have facilitated automatic medical 
decision-making. In general, clinicians prefer transparent and inter
pretable “glass box” models to complex “black box” models, such as 
artificial neural networks (ANNs) [4]. Interpretable models can be 
explained or presented in an understandable manner to a human being 
[5]. SHapley Additive exPlanations (SHAP) is an innovative approach to 
providing interpretability to “black box” models [6]. Likewise, local 
interpretable model-agnostic explanations (LIME) is another technique 
that explains classifiers’ predictions based on learning interpretable 
models around “black box” predictions [7]. However, both SHAP and 
LIME can be viewed as post hoc explanation methods that are not 
transparent enough for clinicians, who are more inclined to inherently 
transparent models like logistic regression [4]. 

Therefore, generic clinical scores are widely accepted and used by 
clinicians and nurses in hospitals for their transparency and accessibility 
[8,9]. Such scores take advantage of integer score points and categorize 
variables to identify clinical outcomes, trigger better care, and improve 
prognoses [10]. Clinical scores are often derived from expert consensus 
or through cohort analyses using traditional statistical methods [11]. 

To aid the development and validation of interpretable clinical 
scores, Xie et al. [12] proposed AutoScore, an automatic clinical score 
generator integrating machine learning and point-based score to ensure 
high discriminability and accessibility. The AutoScore comprises 6 
modules, which include variable ranking, variable transformation, score 
derivation, model selection, score fine-tuning, and model evaluation. 
The AutoScore framework begins with the selection of top-ranking 
variables using machine learning. Then variable transformation con
verts continuous variables into categorical variables for the modeling of 
nonlinear effects. Next, the score derivation process creates a clinical 
score based on logistic regression. The model selection and score fine- 
tuning modules allow the user to determine the variables to include in 
the final score and the cutoff values to categorize continuous variables, 
respectively. Finally, the performance of the score is evaluated on an 
unseen test dataset. 

Despite AutoScore’s ability to generate clinical score systems for a 
wide range of medical applications [13], it may not perform well when 
datasets are unbalanced due to the low prevalence of outcomes, i.e., rare 
medical events. Unbalanced datasets often make predictive models un
reliable since they tend to focus on the dominant class and disregard the 
rare one [14]. Consequently, data imbalance may lead to poor predic
tion capabilities [15,16]. As per previous research, the model prediction 
capabilities were evaluated from two perspectives: evaluation metrics 
such as the area under the curve and the number of variables [17]. 
Therefore, we prefer models with fewer variables while achieving 
comparable or even better evaluation metrics. 

Data imbalance has been addressed through a variety of approaches. 
Researchers traditionally used up-sampling (over-sampling) of minority 
samples, down-sampling (under-sampling) of majority samples, and 
sample weight adjustment to ensure a balanced distribution of classes 
[18]. The synthetic minority over-sampling technique (SMOTE) is a 
popular algorithm dealing with unbalanced datasets, which synthesizes 
new minority samples from several closest neighbors of the real minority 
samples [19]. In the medical domain, the unbalanced nature of many 
datasets has prompted researchers to propose novel approaches. Rah
man et al. developed a cluster-based under-sampling technique [20], 
while Khalilia et al. sampled data to subgroups to build multiple random 
forest models and then ensembled these models to deal with data 
imbalance [21]. Li et al. introduced a Gaussian type fuzzy membership 
function for data down-sampling [22]. In recent years, generative 
adversarial networks (GANs) have been widely used in medical image 

syntheses to create new images for model development [23]. The GAN 
technique can also be applied to the generation of structured data, 
augmenting the proportion of minority samples in datasets and further 
improving the sample category distribution [24]. 

In this study, we sought to integrate methodologies for handling data 
imbalance into AutoScore and create an automated framework that al
lows for reliable risk scores to be derived even from unbalanced datasets. 
The AutoScore-Imbalance framework that we propose utilizes two novel 
components before the variable ranking in AutoScore to balance the 
training set using machine learning and to identify optimal sample 
weights for the rare class. The balanced training samples and sampling 
weights were then incorporated into the modified score derivation 
block, which employed weighted logistic regression to direct more 
attention towards the rare class, thereby reducing the likelihood of bias 
in the final scoring model. 

2. Methods 

2.1. The AutoScore framework 

AutoScore [12] is a machine learning-based clinical score generator 
with six modules. Module 1 uses a random forest to rank variables ac
cording to their importance. Module 2 transforms variables by catego
rizing continuous variables to improve interpretation and cope with 
nonlinearity. Module 3 assigns scores to each categorized variable based 
on a logistic regression model. Module 4 determines the number of 
variables to include in the clinical score model depending on the trade- 
off between model complexity and predictive performance. Module 5 
incorporates clinical knowledge, in which cutoff points can be adjusted 
for the categorization of continuous variables. Lastly, Module 6 evalu
ates the performance of the score in an independent test dataset. The 
AutoScore framework provides a systematic and automated approach to 
the rapid development of a clinical score system, combining the 
advantage of machine learning in its discriminability and the strength of 
point-based score in its interpretability. 

2.2. Proposed AutoScore-Imbalance framework 

To deal with data imbalance and automate the development of 
sparse clinical scores, we proposed AutoScore-Imbalance, a novel 
extension to the original AutoScore framework. AutoScore-Imbalance 
adopts a nested structure to combine and reorganize AutoScore and its 
individual modules. It is comprised of three blocks, including newly 
introduced Block A (training data optimization) and Block B (sample 
weights optimization) to handle data imbalance, and Block C for final 
score derivation and evaluation based on the balanced data. The 
AutoScore-Imbalance framework is illustrated in Fig. 1. Using resam
pling and data synthesis techniques, Block A adjusts the raw unbalanced 
training dataset. Block B is designed to optimize sample (observation) 
weights, which are tuned to correct any imperfections that may lead to 
bias in the class proportion [25]. Block C comprises Modules 2 to 6 of the 
original AutoScore workflow, but now uses the relatively balanced 
datasets obtained in Block A to train the model, and uses a weighted 
logistic regression model in Module 3 (instead of the unweighted logistic 
regression in the original AutoScore) to incorporate the sample weights 
acquired from Block B. 

2.2.1. Block A: Training data optimization 
Using the unbalanced training dataset as input, Block A manipulates 

the data to produce a reasonably balanced dataset. The number of var
iables in the clinical score system is used as a hyperparameter in Block A 
and Block B for intermediate evaluations. As with random forest, we set 
this hyperparameter as the square root of the total number of variables 
[26]. 

Similar to AutoScore, AutoScore-Imbalance divides a full dataset into 
three parts: training data D, validation data, and test data. The training 
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Fig. 1. Flowchart of the AutoScore-Imbalance framework.  

H. Yuan et al.                                                                                                                                                                                                                                   



Journal of Biomedical Informatics 129 (2022) 104072

4

dataset D is used to derive scores, the validation dataset is used for in
termediate evaluation and parameter optimization, and the test dataset 
is reserved as unseen data for model performance assessment. The data- 
balancing methods in Block A are only applied to training data. The 
training dataset D of N samples is defined as follows, 

D = {Di}, i = 1, 2, 3,⋯,N − 1,N (1) 

where i represents the i th subject. D contains Np minority samples 
(positive samples) and Nn majority samples (negative samples). In this 
study, we assume that rare clinical events are positive outcomes. The 
minority prevalence rate P is defined as Np/N. As the first module in 
Block A, Module A aims to increase the minority rate from P to P’(P <

P’ ≤ 0.5) in the manipulated training dataset D’. By using up-sampling 
or other data augmentation techniques, the corresponding number of 
minority samples N’

p in the processed dataset is: 

N’
p = round

(
Nn

1 − P’ − Nn

)

(2) 

When we use down-sampling to reduce sample size, the number of 
majority samples N’

n will become: 

N’
n = round

(
Np

P’ − Np

)

(3) 

In this study, we use an integer α > 0 to denote the up-sampling 
ratio, which corresponds to the quotient in a Euclidean division of N’

p 

by Np: 

N’
p = αNp + r (4) 

where r is the integer remainder with 0 ≤ r < Np. In up-sampling 
operation, α − 1 stands for the replication times of Np and is con
strained through P’ and N’

p to avoid over-augmenting minor samples that 
the model over-fits the minority samples. r is the number of additional 
samples drawn from Np data. For example, if we increase the minority 
sample size from Np = 100 to N’

p = 205, α is 2 and r is 5. The up-sampled 
dataset by Module A will include 2⋅Np minority samples (the original Np 

and the duplicated Np samples), 5 randomly selected minority samples 
from the original Np data, and Nn majority samples. In SMOTE-based 
data augmentation, the number of synthesized samples is (α − 1)⋅Np +

r, which is 105 based on the former example. Since SMOTE cannot 
generate non-integer times of artificial data, we achieve data augmen
tation in two steps: first, we use SMOTE to create (α − 1)⋅Np synthetic 
samples from the original Np minority data, which is 100 based on the 
former example; second, we randomly select 5 samples from the original 
Np samples and then apply SMOTE to produce 5 synthetic ones from 
them. 

There are three types of methods for training data optimization in 
Module A: resampling methods, data synthesis methods, and hybrid 
methods that combine both resampling and data synthesis strategies. 
Resampling methods include up-sampling of minority samples and 
down-sampling of majority samples. Data synthesis methods include 
SMOTE and GAN. These methods and their hybrid versions are used in 
Module A to generate a variety of processed datasets with different 
minority rates P’ (P < P’ ≤ 0.5). Subsequently, each processed dataset 
goes through Modules 1, 2, and 3 to construct risk scores using different 
numbers of top-ranking variables. These scores are evaluated based on 
the area under the curve (AUC) in the receiver operating characteristic 
(ROC) analysis applied to the validation dataset, and the optimally 
processed dataset will be returned. Next, we describe the various 
methods included in Module A, as shown in Table 1. 

Resampling Methods: Simple data resampling techniques include 
up-sampling of minority samples and down-sampling of majority sam
ples. They are the most commonly used techniques for dealing with data 
imbalance [27]. 

Data Synthesis Methods: SMOTE creates realistic “pseudo” 

minority samples through the following steps [19]: (i) Select Z nearest 
neighbors of each minority sample; (ii) Calculate differences between 
the sample and its Z nearest neighbors; (iii) Multiply differences by 
random numbers L (0 < L < 1); (iv) Add those products to the sample to 
generate synthetic samples. By default, SMOTE creates Z (Z is an integer) 
sets of minority samples, i.e., Z⋅Np samples, but cannot directly syn
thesize Z⋅Np + C (0 < C < Np) artificial samples. Therefore, we 
customized the original SMOTE DMwR package [28] to fit our needs. 
GAN was initially proposed by Goodfellow et al. to generate synthetic 
images [23], and Xu et al. extended its application to structured data 
generation [29]. GAN has two adversarial components: a generative 
model and a discriminative model. Through iterative learning, the 
pseudo data generated by the generative model becomes increasingly 
similar to the real data. This study uses GAN to generate synthetic mi
nority samples in the training dataset. 

Hybrid Methods: Additionally, we explore several hybrid tech
niques that combine resampling and data synthesis methods. We first 
increase the minority sample quantity to an intermediate level by up- 
sampling, SMOTE, or GAN. Next, we reduce the sample size from the 
majority class to a specified level through down-sampling. Table 1 
shows three hybrid methods used in our demonstration: up-sampling +

Table 1 
List of methods and their detailed algorithms used in Module A.  

Type Method Algorithm 

Resampling 
Methods 

Down- 
sampling 

D’ =
{

D’
1,D’

2
}

, where D’
1 is Dp, and D’

2 is a set of 
N’

n selected samples without replacement from 
Dn 

Up- 
sampling 

D’ =
{

D’
1,D’

2,D’
3
}

, where D’
1 is D, D’

2 is (α − 1)
times replication of Dp, and D’

3 is r selected 
samples without replacement from Dp 

Data Synthesis 
Methods 

SMOTE D’ =
{

D’
1,D’

2,D’
3
}

, where D’
1 is D, D’

2 is a set of 
(α − 1)⋅Np synthetic samples obtained from Dp 

through SMOTE, and D’
3 is a set of r synthetic 

samples obtained from r randomly selected 
samples of Dp through SMOTE 

GAN D’ =
{
D’

1,D’
2
}
, where D’

1 is D, and D’
2 is a set of 

(N’
p − Np) synthetic minority samples obtained 

from D through GAN 
Hybrid Methods Up- 

sampling 
+

Down- 
sampling 

D’
h is an intermediate dataset with minority rate 

of (P+P’)/2 generated from D through up- 
sampling, and the final dataset D’ with minority 
rate of P’ is created from D’

h through down- 
sampling 

SMOTE 
+

Down- 
sampling 

D’
h is an intermediate dataset with minority rate 

of (P+P’)/2 generated from D through SMOTE, 
and the final dataset D’ with minority rate of P’ 

is created from D’
h through down-sampling 

GAN 
+

Down- 
sampling 

D’
h is an intermediate dataset with minority rate 

of (P+P’)/2 generated from D through GAN, 
and the final dataset D’ with minority rate of P’ 

is created from D’
h through down-sampling 

D: The original training dataset. 
D’: The training datasets after Module A processing. 
Dp: The minority samples in D.
Dn: The majority samples in D.
D’

1, D’
2, D’

3: The first, second, and third part in D’, individually. 
D’

h: The intermediate dataset in hybrid methods. 
N: The total sample size in D.
Np: The minority sample size in D.
Nn: The majority sample size in D.
N’

p: The minority sample size in D’ (See Equation (2)). 
N’

n: The majority sample size in D’ (See Equation (3)). 
P: The minority rate in D.
P’: The minority rate in D’.

α: the quotient in the Euclidean division of N’
p by Np (See Equation (4)). 

r: The remainder part of the Euclidean division of N’
p by Np (See Equation (4)).  
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down-sampling, SMOTE + down-sampling, and GAN + down-sampling. 

2.2.2. Block B: Sample weights optimization 
Block B is designed to derive optimal sample weights for the majority 

and minority samples generated from Block A. The sample weight is 
defined as the contribution of each subject Di to the loss function. In 
conventional logistic regression analysis, every subject contributes 
equally, as indicated by a common sample weight of one. When working 
with imbalanced data, where predictive models tend to be dominated by 
majority samples [14], we increase the weight assigned to minority 
samples to make erroneous predictions for this class more costly. With 
the sample weights, our proposed model no longer solely concentrates 
on the majority samples and ignores the minority samples [30]. To find 
an optimal weight for majority and minority samples, we developed the 
following approach. The sample weight of the majority sample is always 
set to one to ensure that the weight optimization process starts with 
treating each majority and minority sample equally. The procedure then 
gradually increases the minority sample’s weight so that the loss func
tion focuses more on the minority samples. To be specific, Block B re
ceives the optimal dataset from Block A and outputs the optimal sample 
weights for samples in the optimal dataset. We use the AUC on the 
validation dataset as the criterion to select the optimal sample weights 
for minority samples in a grid search ranging from 1 to wmax = N′

n/N′

p (to 
be rounded up to an integer) with a pre-set integer step, s. 

2.2.3. Block C: Final score derivation and evaluation 
Using the relatively balanced training dataset obtained from Block A 

and the optimal sample weights obtained from Block B as the inputs, 
Block C employs the original AutoScore framework (but beginning from 
Module 2) to generate sparse clinical scores. Module 2 converts 
continuous variables in the relatively balanced, restructured training 
dataset into categorical variables. In contrast to the original Module 3 in 
AutoScore, which uses an unweighted logistic regression model, Module 
3 in Block C applies a weighted logistic regression model to the pro
cessed training dataset using the sample weights obtained from Block B. 
Module 4 determines the number of variables to be included in the 
clinical score using a parsimony plot, where top-ranked variables are 
chosen when there is no substantial improvement in AUC values with 
the addition of more variables. Module 5 allows users to customize 
cutoffs based on their domain knowledge. Module 6 evaluates the 
derived clinical score based on multiple performance evaluation met
rics. Overall, Block C, the last step of the AutoScore-Imbalance frame
work, produces a standard clinical score table used for subsequent risk 
prediction. 

2.3. Experiments 

We demonstrated our AutoScore-Imbalance algorithm using the de- 
identified intensive care unit (ICU) dataset as our previous paper [12]. 
This dataset includes 21 continuous variables and 44,918 ICU admission 
episodes (including 3,958 positive episodes, defined as deaths that 
occurred during the hospital stay) of the Beth Israel Deaconess Medical 
Center between 2001 and 2012 (MIMIC-III dataset) [31]. We intend to 
create an unbalanced dataset for demonstrating our AutoScore- 
Imbalance method. There is currently no consensus on the definition 
of rare event rate. Several studies have reported an imbalance level (i.e., 
minority rate) of 1% [32], 0.5% [33], and 0.1% [34]. Our research 
adhered to the recommendation in a survey paper [35] that the 
minority-majority class rate is often less than or equal to 1% in a sce
nario of high-class imbalance. In this study, we randomly selected 404 
positive (Death) and 40,000 negative (Survival) admission episodes to 
create a dataset with a 1% positive rate to demonstrate our methods 
under highly imbalanced conditions [36]. Additional experiments on 
datasets with positive rates of 0.5% and 0.1% were presented in the 
Appendix. To derive and evaluate the clinical score models, we split the 

entire dataset into three parts: training dataset (60%), validation dataset 
(20%), and test dataset (20%). 

We compared the clinical score model derived by AutoScore- 
Imbalance with that of the original AutoScore, full logistic regression, 
stepwise logistic regression, LASSO, full random forest, and random 
forest with a reduced number of variables. We chose the “optimal” 
thresholds as the points nearest to the upper-left corner in the ROC 
curves to calculate performance metrics. In addition to commonly used 
metrics (AUC, sensitivity, specificity, negative predictive value [NPV], 
positive predictive value [PPV]), we used balanced accuracy (i.e., the 
average of the sensitivity and specificity values) to evaluate various 
model predictions on unbalanced datasets [37]. Sensitivity, specificity, 
NPV, PPV, and balanced accuracy were calculated with each model’s 
optimal threshold, and their corresponding 95% confidence intervals 
(CIs) were obtained via bootstrapping [38]. 

2.4. Code Availability 

We implemented AutoScore-Imbalance in R software based on the 
AutoScore package [39] and made the corresponding software package 
available on GitHub [40]. 

3. Results 

This study analyzed 40,404 ICU admission episodes. Specifically, the 
training dataset consisted of 24,244 episodes (60%, containing 244 
positive samples), while the validation dataset consisted of 8,080 epi
sodes (20%, including 80 positive samples), and the test dataset 
comprised 8,080 episodes (20%, containing 80 positive samples). We 
created a total of nine clinical score models, including AutoScore. Fig. 2 
illustrates the parsimony plots for the original AutoScore and eight sub- 
models of the AutoScore-Imbalance framework. We manually selected 
the “near-optimal” number of variables to ensure that the performance 
could not be significantly improved by including additional variables in 
the models. Compared with the original AutoScore, most AutoScore- 
Imbalance sub-models achieved the “near-optimal” solutions with 
fewer variables, except for its sub-model (GAN, e = 500), which was 
insufficiently trained due to a small number of epochs in deep learning 
frameworks. Furthermore, the results in Table 2 show an enhanced 
performance of GAN-based clinical score models with increased training 
epochs. 

We summarize the performance of different clinical score models in 
Table 2. The original AutoScore included 11 variables and achieved an 
AUC of 0.723 (95% CI: 0.663–0.783) and a balanced accuracy of 0.698 
(95% CI: 0.643–0.753). Despite using fewer variables (apart from GAN 
[e = 500]), all sub-models of AutoScore-Imbalance had higher AUC and 
balanced accuracy values than the original AutoScore. Notably, 
AutoScore-Imbalance (down-sampling) achieved an AUC of 0.771 (95% 
CI: 0.718–0.823) and a balanced accuracy of 0.705 (95% CI: 
0.651–0.759) with only five variables—less than half of the variables 
required by the original AutoScore. Furthermore, AutoScore-Imbalance 
yielded the highest balanced accuracy of 0.757 (95% CI: 0.702–0.805) 
using up-sampling and ten variables, higher than the value of 0.698 
(95% CI: 0.643–0.753) in the original AutoScore with 11 variables and 
the maximum of 0.720 (95% CI: 0.664–0.769) in other baseline models 
(i.e., logistic regression and random forest models). Three AutoScore- 
Imbalance sub-models (SMOTE, up-sampling, up-sampling + down- 
sampling) outperformed all baseline methods (including random forest 
using all 21 variables) in terms of AUC and balanced accuracy while 
having better interpretability in the form of a clinical score. 

Table 3 presents the selected variables by the original AutoScore and 
eight sub-models of the AutoScore-Imbalance framework. The 
AutoScore-Imbalance sub-models, except for GAN [e = 500], utilized 
fewer variables than the model generated by the original AutoScore. 
While there were overlaps in selected variables between AutoScore and 
AutoScore-Imbalance (e.g., both included heart rate, age, lactate, and 
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respiration rate), there were also notable differences. For example, 
blood urea nitrogen was selected by all AutoScore-Imbalance clinical 
score models but not by the original AutoScore. Also, sodium, mean 
arterial pressure, creatinine, chloride, anion gap were only selected by 
AutoScore-Imbalance sub-models. Variables not selected by AutoScore 
could potentially distinguish rare events from dominating major events. 

With AutoScore-Imbalance, a clinical score table can be generated 
for direct application to clinical practice. This score ranging from 0 to 
100 (scores larger than 100 would be automatically rounded to 100; the 
range could be adjusted based on clinical needs) is used to identify pa
tients at risk of suffering from adverse events. The minimum score is 0, 
which stands for no risk, while the maximum score of 100 means the 
highest risk. As an example, Table 4 summarizes fine-tuned clinical 
score tables for inpatient mortality prediction based on the nine-variable 
AutoScore-Imbalance sub-model (up-sampling + down-sampling), five- 
variable AutoScore-Imbalance sub-model (down-sampling), and eleven- 
variable original AutoScore clinical score model. 

4. Discussion 

This study developed an interpretable machine learning model that 
coped with data imbalance and generated trustworthy clinical scores. 
Using an unbalanced real-world dataset, the proposed AutoScore- 
Imbalance framework achieved an improved prediction performance 
than the original AutoScore with fewer variables. Due to its sparsity, 
parsimony in variable selection, and intrinsically interpretable output 
format (See Table 4), a clinical score derived from AutoScore-Imbalance 

is practical for use at the bedside compared with both statistical methods 
and “black box” machine learning models. 

When studying various approaches to handle data imbalance, con
ventional methods (up-sampling, down-sampling, and SMOTE) have 
proven to be effective in handling unbalanced datasets to develop risk 
scores. Additionally, AutoScore-Imbalance in conjunction with a mod
ern technique, GAN, displayed comparable performance and out
performed the original AutoScore when training epochs were increased. 
GAN needs sufficient training epochs to generate reliable synthetic 
samples [41]. Therefore, a suitable training epoch for GAN should be 
determined upon assessment of a validation dataset. 

Compared with AutoScore and AutoScore-Imbalance, baseline 
methods have an intrinsic advantage, as they can build clinical score 
models using high-resolution, continuous variables rather than catego
rized variables. This superiority, however, poses a limitation to the 
utility of baseline models in clinical risk prediction, where sparse and 
itemized scores are favored. In this regard, it is noteworthy that 
AutoScore-Imbalance produced improved prediction results while pre
serving score sparsity and clinical usability. Furthermore, among all 
baseline models, LASSO demonstrated the best prediction ability, which 
is in accordance with the fact that LASSO is effective in identifying 
important variables in unbalanced datasets [42]. 

The strength of AutoScore-Imbalance lies in its ability to address data 
imbalance while at the same time producing reliable and interpretable 
clinical scores. The outputs of AutoScore-Imbalance, integer-based, 
itemized clinical scores, are better received by clinicians than compli
cated “black box” models. For example, a prospective observational 

(a) Original AutoScore (b) Down-sampling (c) Up-sampling

(d) SMOTE (e) Up-sampling + Down-sampling (f) SMOTE + Down-sampling

(g) GAN (e=500) (h) GAN (e=5000) (i) GAN (e=5000) + Down-sampling

Fig. 2. Parsimony plots of the original AutoScore and AutoScore-Imbalance sub-models on the validation datasets (the orange diamond indicates the number of 
variables selected for each model). 
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study has shown that clinical scores improved patient safety in surgical 
wards and should be implemented in practice [43]. The variable ranking 
module of AutoScore-Imbalance offers a straightforward evaluation of 
variable importance to the outcome of interest, providing an objective 
support to clinicians’ assessments based on their experience and domain 
knowledge. Besides being a convenient tool for risk assessment, the 
clinical score derived from AutoScore-Imbalance also quantifies the 
impact of variables on the outcome, thus enabling a transparent score 
interpretation via the points assigned to each variable category. As an 
example, the five-variable AutoScore-Imbalance (down-sampling) score 
model suggests that high blood urea nitrogen level (32.5 mg/L or 
higher) has a substantial impact on the risk of inpatient mortality, as 
indicated by the corresponding point of 33, whereas temperature only 
shows a marginal effect on the outcome (the maximum point associated 
is 5). 

The novel AutoScore-Imbalance framework provides a practical and 
referable two-step pipeline for modifying training data and adjusting 
sample weights to handle data imbalance, which is not explicitly limited 
to clinical applications. Moreover, AutoScore-Imbalance is designed in a 
modular manner to make it easy to incorporate other state-of-the-art 
techniques for efficient score derivation and evaluation. When making 

high-stakes decisions within clinical settings, the use of AutoScore- 
Imbalance-derived clinical scores requires careful selection of candi
date variables. In our example, all variables came from objective in
struments rather than the experience or knowledge of the physicians; 
this is consistent with recent research showing that objective and data- 
driven clinical tools are capable of improving the triage process [44]. In 
the meantime, it is crucial to emphasize that prospective studies are still 
necessary to confirm the scores’ sustainability, cost-effectiveness, and 
physician perceived acceptability [45]. 

The contributions in this work can lead to new lines in rare events- 
related decision makings. Several new questions emerge in light of the 
discoveries presented here. First, we evaluated AutoScore-Imbalance on 
a dataset created from EHR data with a minority rate of 1%. Addition
ally, we created datasets with similar sample sizes, but lower minority 
rates (0.5% and 0.1%) from the same EHR data to further examine 
AutoScore-Imbalance (see Appendix). Further testing of AutoScore- 
Imbalance will be conducted in future studies with varying minority 
rates and sample sizes. Second, we examined only one clinical applica
tion using the MIMIC-III database for demonstration. Given the low 
percentage of positive samples, only 80 positive cases were in the test 
set, which led to relatively low PPV values and overlapping CIs of 

Table 2 
Performance of the original AutoScore, AutoScore-Imbalance, and baselines.  

Models m 
a 

Threshold 
b 

AUC c Sensitivity d Specificity e Balanced 
Accuracy f 

NPV g PPV h 

AutoScore 11 58 0.723 
(0.663–0.783) 

0.700 
(0.600–0.800) 

0.696 
(0.686–0.706) 

0.698 
(0.643–0.753) 

0.996 
(0.994–0.997) 

0.022 
(0.019–0.026) 

Full LR 21 0.007 0.743 
(0.685–0.801) 

0.787 
(0.700–0.875) 

0.602 
(0.591–0.612) 

0.695 
(0.646–0.744) 

0.996 
(0.995–0.998) 

0.019 
(0.017–0.022) 

Stepwise LR 16 0.011 0.737 
(0.679–0.796) 

0.637 
(0.537–0.750) 

0.748 
(0.738–0.757) 

0.693 
(0.638–0.754) 

0.995 
(0.994–0.997) 

0.025 
(0.021–0.029) 

LASSO 6 -4.586 0.768 
(0.716–0.820) 

0.738 
(0.637–0.825) 

0.702 
(0.691–0.712) 

0.720 
(0.664–0.769) 

0.996 
(0.995–0.998) 

0.024 
(0.021–0.027) 

Full RF 21 0.005 0.743 
(0.685–0.800) 

0.775 
(0.675–0.863) 

0.602 
(0.591–0.613) 

0.689 
(0.633–0.738) 

0.996 
(0.995–0.998) 

0.019 
(0.017–0.021) 

Parsimony RF 11 0.005 0.714 
(0.655–0.772) 

0.750 
(0.650–0.838) 

0.592 
(0.581–0.602) 

0.671 
(0.616–0.720) 

0.996 
(0.994–0.997) 

0.018 
(0.016–0.020) 

AutoScore- 
Imbalance 

SMOTE 10 55 0.779 
(0.727–0.832) 

0.775 
(0.675–0.863) 

0.685 
(0.675–0.695) 

0.730 
(0.675–0.779) 

0.997 
(0.995–0.998) 

0.024 
(0.021–0.027) 

US 10 57 0.780 
(0.724–0.835) 

0.738 
(0.637–0.825) 

0.776 
(0.767–0.785) 

0.757 
(0.702–0.805) 

0.997 
(0.995–0.998) 

0.032 
(0.028–0.036) 

DS 5 68 0.771 
(0.718–0.823) 

0.537 
(0.437–0.637) 

0.873 
(0.865–0.880) 

0.705 
(0.651–0.759) 

0.995 
(0.994–0.996) 

0.041 
(0.032–0.048) 

US + DS 9 55 0.786 
(0.732–0.839) 

0.725 
(0.625–0.825) 

0.758 
(0.749–0.768) 

0.742 
(0.687–0.797) 

0.996 
(0.995–0.998) 

0.029 
(0.025–0.033) 

SMOTE + DS 8 55 0.767 
(0.714–0.820) 

0.750 
(0.650–0.838) 

0.689 
(0.678–0.699) 

0.720 
(0.664–0.769) 

0.996 
(0.995–0.998) 

0.024 
(0.020–0.026) 

GAN (e =

500) 
15 49 0.744 

(0.686–0.802) 
0.625 
(0.525–0.725) 

0.795 
(0.786–0.803) 

0.710 
(0.656–0.764) 

0.995 
(0.994–0.997) 

0.030 
(0.024–0.035) 

GAN (e =

5000) 
9 36 0.753 

(0.704–0.803) 
0.725 
(0.625–0.825) 

0.690 
(0.679–0.700) 

0.708 
(0.652–0.763) 

0.996 
(0.995–0.997) 

0.023 
(0.020–0.026) 

GAN (e =

5000) + DS 
10 36 0.759 

(0.710–0.809) 
0.738 
(0.637–0.838) 

0.699 
(0.689–0.709) 

0.719 
(0.663–0.774) 

0.996 
(0.995–0.998) 

0.024 
(0.021–0.027) 

LR: Logistic regression. 
LASSO: Least absolute shrinkage and selection operator. 
RF: Random forest. 
SMOTE: Synthetic minority over-sampling technique. 
US: Up-sampling. 
DS: Down-sampling. 
GAN: Generative adversarial networks. 
e: Training epochs of GAN. 

a The number of variables included in each model. 
b Optimal cutoff values, defined as the points nearest to the upper-left corner in the ROC curves. 
c AUC: the area under the ROC curve. 
d Sensitivity = TP / (TP + FN), TP: true positive, FN: false negative. 
e Specificity = TN / (TN + FP), TN: true negative, FP: false positive. 
f Balanced Accuracy = (Sensitivity + Specificity)/2. 
g NPV: negative predictive value = TN/ (TN + FN). 
h PPV: positive predictive value = TP / (TP + FP). 
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evaluation metrics for all methods. It is, therefore, necessary to perform 
additional validations under different settings. Third, the heterogeneity 
of clinical applications prevented us from recommending the best way to 
handle data imbalance. In general, SMOTE is a popular tool for aug
menting data but might not be effective in specific scenarios, as with 
other sampling techniques [46]. And, it is worth considering GAN for 
dealing with high-dimensional data [47]. Lastly, our method was 
designed for tabular data without considering time-series data [48]. To 
develop a complete AutoScore-Imbalance solution, further studies will 
be required to extend its application to longitudinal data [49]. 

5. Conclusion 

We proposed an interpretable machine learning-based AutoScore- 

Imbalance framework for automatic clinical score generation that ad
dresses data imbalance. Compared with baseline models, this innovative 
framework presented a capability of developing good-performing and 
interpretable clinical scores on unbalanced datasets. We anticipate that 
this score generator will hold great potential in creating and evaluating 
sparse and itemized clinical scores in a variety of settings. 
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Table 3 
Selected variables in different clinical scores.  

Models Original AutoScore AutoScore-Imbalance 

SMOTE US DS US 
+ DS 

SMOTE 
+ DS 

GAN 
(e = 500)

GAN 
(e = 5000)

GAN 
(e = 5000)
+ DS 

m a 11 10 10 5 9 8 15 9 10 
Temperature 

(◦C) 
✓ ✓ ✓ ✓ ✓  ✓   

Heart rate 
(beats/min) 

✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓ 

Age 
(years) 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Respiration rate 
(breaths/min) 

✓ ✓ ✓ ✓ ✓ ✓ ✓   

Systolic blood pressure 
(mm Hg) 

✓ ✓ ✓  ✓ ✓ ✓   

SpO2 

(%) 
✓ ✓ ✓  ✓ ✓ ✓  ✓ 

White blood cells 
(thousand per microliter) 

✓ ✓ ✓  ✓  ✓   

Diastolic blood pressure 
(mm Hg) 

✓      ✓   

Platelet 
(thousand per microliter) 

✓ ✓ ✓    ✓   

Glucose 
(mg/dL) 

✓         

Sodium 
(mmol/L)       

✓ ✓ ✓ 

Lactate 
(mmol/L) 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Mean arterial pressure 
(mm Hg)       

✓   

Potassium 
(mmol/L)          

Bicarbonate 
(mmol/L)       

✓ ✓ ✓ 

Blood urea nitrogen 
(mg/dL)  

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Hematocrit 
(%)          

Creatinine 
(μmol/L)        

✓ ✓ 

Hemoglobin 
(g/dL)          

Chloride 
(mEq/L)       

✓ ✓ ✓ 

Anion gap 
(mEq/L)      

✓  ✓ ✓ 

✓: The variable is selected in this model. 
e: Training epochs of generative adversarial networks (GAN). 
SMOTE: Synthetic minority over-sampling technique. 
US: Up-sampling. 
DS: Down-sampling. 
GAN: Generative adversarial networks. 
SpO2: Peripheral capillary oxygen saturation. 

a Parameter m is the number of variables included in the AutoScore model.  
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AutoScore-Imbalance Original AutoScore 

Up-sampling + Down- 
sampling 

Down-sampling 

Variables and 
Interval a 

Point Variables and 
Interval 

Point Variables and 
Interval 

Point 

Age (years) 
< 50 0 < 50 0 < 50 0 
50–65 7 50–65 13 50–65 9 
65–75 13 65–75 18 65–75 14 
≥ 75 17 ≥ 75 22 ≥ 75 19 
Lactate (mmol/L) 
< 1.7 6 < 1.7 13 < 1.7 7 
1.7–1.8 2 1.7–1.8 0 1.7–1.8 4 
1.8–2 0 1.8–2.3 5 1.8–1.95 0 
≥ 2 13 ≥ 2.3 24 ≥ 1.95 12 
Temperature (◦C) 
< 36.5 4 < 36.5 5 < 36.5 6 
≥ 36.5 0 ≥ 36.5 0 ≥ 36.5 0 
Heart rate (beats/min) 
< 74 5   < 74 5 
74–84 0   74–84 0 
84–95 3   84–95 4 
≥ 95 16   ≥ 95 16 
SpO2 

b (%) 
< 96.3 3   < 96.3 4 
96.3–98.8 0   96.3–97.6 1 
≥ 98.8 6   97.6–98.7 0     

≥ 98.7 5 
Systolic blood pressure (mm Hg) 
< 110 8   < 110 5 
110–120 1   110–130 0 
120–130 0   ≥ 130 5 
≥ 130 5     
White blood cells (thousand per microliter) 
< 7.95 6   < 7.9 5 
7.95–10.7 0   7.9–10.6 0 
≥ 10.7 12   10.6–14 11     

≥ 14 13 
Respiration rate (breaths/min) 
< 16 2 < 16 2 < 16 3 
16–18 0 16–18 0 16–18 0 
18–21 3 18–21 4 18–20 5 
≥ 21 7 ≥ 21 16 ≥ 20 6 
Blood urea nitrogen (mg/dL) 
< 12.5 1 < 13.5 7   
12.5–18 0 13.5–19 0   
18–29 8 19–32.5 20   
≥ 29 17 ≥ 32.5 33   
Platelet (thousand per microliter)     

< 160 7     
160–210 4     
210–280 0     
≥ 280 3 

Glucose (mg/dL)     
< 111 4     
111–129 0     
129–153 4     
≥ 153 2 

Diastolic blood pressure (mm Hg)     
< 71.1 8     
71.1–77.2 6     
77.2–85.2 0     
≥ 85.2 5  

a An interval (q1-q2) represents q1 ≤ x < q2. 
b SpO2: peripheral capillary oxygen saturation. 
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